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1. Introduction

Let

be the normalized Eisenstein series of weight k over SL(2,7Z), where k > 4 is an even
integer, By, is the kth Bernoulli number, and ox—1(n) =>4, dk—1.

Several previous papers have studied the relationships between products of Eisen-
stein series. Using the Rankin-Selberg method, Duke [Duk99] and Ghate [Gha00] each
independently proved that the equation

Ey, Ex, = FEy
has only solutions forced by dimension considerations, i.e. those given by
E} = Es, E1Es=Ew, EiEw=Fu, EsEs=Ey. (1.1)

Emmons and Lanphier [EL07] extended this result to the case

11w = Ee
i1

proving that this equation has solutions only for ¢ € {8,10,14}, where these solutions
are among the list given in equation (1.1). Their proof relies on controlling the growth
of the coefficients
(27i)k 2k
Cp=—nd =

C(k)(k—=1! By
using their rapid decrease in magnitude to argue that the g-coefficients of [[;_; Ex, and
Ey cannot be equal in general.

In a somewhat different direction, Nozaki [Noz08] studied the function

1

Fi.(A) = ™2 E (1) = 3 Z (ce®®/? 4 de™/2)7F = 2 cos(k0/2) + Ti(0), (1.2)

(e,d)=1

c,deZ

first considered in [RS70], where T} (6) becomes trivially small as k increases. The

functions F () and Ej(e'?) have the same zeros in [7/2, 27 /3], allowing Nozaki to ap-
proximate locations of the zeros of Eisenstein series using the zeros of 2 cos(kf/2).

In this paper, we refine Nozaki’s methods to demounstrate that for any ¢ < k, if Fjy has

27(1'/3)

a nontrivial zero (meaning a zero other than 7 and e , then the nontrivial zero of Ej,

closest to ¢ is distinct from every zero of £y (see Lemma 2.4). We use a novel application
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of these methods to completely classify all monomial relations hetween Eisenstein series,
as in the following theorem.

Theorem 1.1. The equation

I1Ex =] £,

i=1 j=1

with k; # €5 for any 1 <i <n, 1< j <m holds if and only if ki, {; € {4,6,8,10,14} for
all i, 7, and both sides can be rewritten as the same product of powers of Ey and Eg by
using equation (1.1).

Thus there are no “nontrivial” monomial relations between Eisenstein series, where by
nontrivial we mean relations which cannot be immediately obtained by taking identical
products and augmenting them with the relations in equation (1.1).

Finally, as an application of Theorem 1.1, we will show in Theorem 3.4 a certain
inequality between critical values of the L-functions associated to normalized Hecke

eigenforms.
2. Finding a distinct zero of E;

To prove Theorem 1.1, we must show that, with the exception of E4, Fg, Ex, g,
and E14, every Eisenstein series has at least one zero not shared by any Eisenstein series
of lesser weight. In Lemma 2.2, we find a bound on the zeros «f ,, of Fj in terms of
their approximate values oy, , (see Definition 2.1). Corollary 2.3 to this lemma gives an
interesting result regarding the zeros of Eisenstein series, helpful in proving Lemma 2.4.
Lemma 2.4 states that the nontrivial zero of E} closest to i, if it exists, is distinct from
every zero of Ey for £ < k, providing us with what we need to prove Theorem 1.1.

We begin by introducing a useful definition.

Definition 2.1 ([Noz08]). Let ay, refer to the nth-zero of 2cos(kf/2) located at
T(3+21) if k= 0 (mod 4) and at 7 (3 +22) if £ = 2 (mod 4), for 1 < n <
dim(M},) — 1 where Mj, is the space of modular forms of weight k and level one. Let ay ,
refer to the unique nth zero of Fj(#) approximated by oy . where Fy(f) is defined in
equation (1.2).

Note that the nontrivial zeros of Ej, are exactly the points k..

The following lemma is a slight improvement on the statement of Lemma 3.1 in [Noz08]
which formalizes the sense in which aj ,, is “approximated” by a5 for oy sufficiently
close to 5. We will rely heavily upon it moving forwards.

Lemma 2.2. For any real ¢ > 1, there exists a positive integer K, such that if k > K,
and ay , + -z < 117 /18 then
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™
*
Qfop — m < Ok n < Qgn +

-

ck?’

Proof. Notice that

2 cos (g(“”w + %))' = |2cos (gakn> cos (i%) — 2sin (gak!n) sin (i%)'

= 2sin (2—:}{) .

So we can write

200s (§ (onn = 575) )| = 7 (o ) =250 () = [ (om0

,2 7 31 k
w2k 2\ 1.1

4(11)F = 3ek

T 2ck(11)k

For clarification on the inequality, see equation (3.5) in [Noz08]. We now have

2sin (QCk) — |T,zC (ak,n kg)‘ >0 if 4(1.1)% — 3ck > 0,

ie. 1.1°k7 1 > de

The expression 1.1k~ is unbounded and strictly increasing for k € [1,00). Let K. be
the minimum positive integer such that 1.15-K1 > % and let k£ > K.. Then

Zsin (2ck) - |T’“ (“’“’” + %) | :

Therefore Fy is nonzero at oy, = 7, and the sign of Fj (ak,n + %) is determined by
the sign of 2cos (2 (ak n Wi)) Since the points ax, + 7 are symmetric around a
zero of 2 cos(k#/2), we know that

2 cos (g (ak!n + %)) = —2cos (g (ak,n — %)) s

and thus

Fi (nn + kQ)F’“ (ehin = k2)<0

This implies that Fj, changes signs on this interval, so there must exist an a7, ,, satisfying

™
!
Ve — m < ak,n < Ao +

]

T
ck?
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and Fy(o) ) = 0. Now we recall from Rankin and Swinnerton-Dyer [RS70] that o} , is
the unique zero in the interval (agn, — T, ak,n + 7). Since ¢ > 1, we have that J7 < .
Thus we know that o), ,, = aj ,,, completing the proof. O

Note that K. increases only logarithmically with respect to e¢. For instance, K1 =
34, Ko = 44, K19 = 65, K192 = 120, K196 = 198, and so on. Thus, this is an efficient
way to bound the error between ay ., and o, for surprisingly small k. Additionally, the
above proof makes it clear that we could relﬁlace =#z with the bound %;e’dk for any d
such that ¢? < 1.1 due to the dependence on the exponential term 1.1%. However, this
minor improvement is unnecessary for the proof of the main theorem.

Remark. It is important for the proofs of Corollary 2.3 and Lemma 2.4 that Lemma 2.2
applies to the zeros ay,; for all & > 34, and also applies to ag o for £ > 36 and £ =0
(mod 4). Under these conditions we may choose ¢ > 1 with corresponding K. > 34
(noting that Ky = 34), and for j =1 or j = 2 we have

T 1 3 T 117
it g2 =T\3 ) T e me

Therefore, the condition ay ; + -7z < lll—sﬂ required for Lemma 2.2 is satisfied under these
conditions.

Lemma 2.2 implies the following property of the zeros of Fj, which will aid in the
proof of Lemma 2.4.

Corollary 2.3. The sequences

{adj1tiza, {adjie1}iza

are each strictly decreasing to 5.
Proof. First, let £ =45 and k > 36. We choose ¢ = 1 and apply Lemma 2.2 to get

T . T
Qp1 — ﬁ < Qp < Q1 + ﬁ

This yields the relation

Qp1 — Qppgq > Qg1 — Qi1 — T (k_lg + ﬁ)
k+4—k  (k+4)2+k?
T k(k+4) Rkt 4)2
ﬂ2k2+8k— 16
2k +4)2




450 T. Griffin et al. / Journal of Number Theory 219 (2021) 445-459

Therefore,

ajy > appgy i 267 + 8k — 16 > 0,
which is true for k > 36. Likewise, for k = 4j +2 and k > 34,

2k+8-2k  (k+4)°+4
k(k+4) | K2k +4)?
_ 6k 424k — 16

T k2(k 4 4)2

* *®
Qg1 — Qpqgq > T

Therefore,
afq > agyyy if 6K+ 24k — 16 > 0,

which is true for £ > 34. When k < 34, the relation o ;| > aj,,; can be computationally
verified (see Table 4 and Table 5). O

Remark. This corollary can be generalized to the statement that for any fixed m and for
j sufficiently large, the sequences {aj; .} and {aj; o, } are each strictly decreasing to
5. However, the exact formulation of this proof is tedious as it requires that k = 4j or
4j + 2 be large enough relative to m to ensure that ay ,, + 7z < 111_;'
will not happen for the first few k for which £} has an mth zero on A.

In general, this
The following Lemma 2.4 is the key component in the proof of Theorem 1.1. The
proof of Lemma 2.4 proceeds in a very similar fashion to that of Corollary 2.3.

Lemma 2.4. If £}, has a nontrivial zero, then the nontrivial zero of Ey closest to i is
distinct from every zero of Ey for all £ < k.

Proof. We carry out the proof in 6 cases according to the values of k and £.

Case 1. Let k =/ (mod 4) and suppose that £ < k. Then Corollary 2.3 tells us that
g1 < 0opy <A,

for m > 1, completing the proof for this case.

Case 2. Let k,¢ > 34, k=0 (mod 4), £ =2 (mod 4), and ¢ < k. We choose ¢ = 1 and

apply Lemma 2.2 to get

. . 1 1
Qpp —Qpq >0Qp1 — Qg1 —T 5—2 -+ E
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2k -1 k2 2

Tkt T TR0
PR R P
- (kD)2

Thus,

ajq —apq >0 if 2620 — Pk —k? — 02 > 2K%0 — (0 +2)k* > 0,

= —2>0.
So we have
g < apq < op
for m > 1, completing the proof for this case.

Case 3. Let £, ¢ > 38, k =2 (mod 4), / =0 (mod 4), and ¢ < k/2. We choose ¢ = 1.3,
corresponding to K3 = 38, and apply Lemma 2.2 to get

* * 1 ]-
1T Gk > Q1T W =T (m - m)
k—2¢ - K2+ 2

ke 1.3(k0)?
1.3k2%0 — 2,602k — k* — £2

1.3(k()2

=T

Thus,

af g —ofq >0 if 1.3k — 2,602k — k2 — (2 >0,
2
ie. — (%) + 1.3k (%) — (2.6k + 1) > 0.

The parabola —x? + 1.3kx — (2.6k + 1) faces downwards. It can be checked that this

parabola is positive at z = (kjg)/g

[m, %] . This tells us that

and at x = g when k > 38, and thus it is positive on

# * *
Qpq < Qpp < Qg
for m > 1, completing the proof for this case.

Case 4. Let k£, ¢ > 38, k =2 (mod 4), £ =0 (mod 4), and ¢ > k/2. We again choose
c=1.3 and apply Lemma 2.2 to get
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1.3¢2 1.3k2
k—2¢ 24+ k2
+ 7
kel 1.3(k()2

1.3k20 — 2,602k + k2 + ¢
1.3(kt)2

. . 1 1
Qpq—Qpq <Qpi— Q1 +T +

=T

Thus,

apy — oy <0 0f L3K*0—2.60%k + k* + 6% <0,
2
ie. (%) +1.3k (%) —(2.6k—1) <0.

The parabola 22 4+ 1.3kz —(2.6k — 1) faces upwards. It can be checked that this parabola is

negative at x = m and at z = ﬁ for k£ > 38. Thus it is negative on {k—fz W} ,

implying that
* S
g < O q-
Next, we revert to ¢ = 1 from Lemma 2.2 and compute

. . 1 1
ag‘g - Ozk71 > O{EQ - O{k,l - 5*2 + ﬁ

3k — 2/ 02+ k2

TR T2
3R 2% 2 2
(k)2

Thus,

ajo—ajq >0 if 3K%0—20% — k* — 2 > 3K*0 — (20 + 2)k> > 0,

—=(-2>0.
So we have
apq < gy <apy<ap,,
for m > 2, completing the proof for this case.

Case 5. Let k£ > 72,/ < 36. We choose ¢ = 1 and apply Lemma 2.2 to get

™

) 1 2
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Then since 1.657 < of; < aj, for m > 1 when ¢ < 36, the lemma is proven for
k> T2 £ < 36.

Case 6. In the final remaining case, when k& < 72,/ < 36, the relations a1 # a1,
ay1 7 g2 can be verified with the data in Tables 1, 2, and 3. Note that we need not
worry about aig 5 because the closest zero of Fag to o | must be agg ; or azgs. O

Remark. Using the same method shown above, the result of this lemma could easily be
extended to the case where £ > k, assuming ¢ is sufficiently close to k. In particular, this
result is still true if £ > & and dim(Mj,) > dim(Mp), as when £ and k are sufficiently close,
we have an interlacing property whereby either af | < aj; <aj,orap; <ap, <oj,.

3. Conclusion and discussion

We are now ready to present the following proof of Theorem 1.1.

Proof of Theorem 1.1. It is clear that if both sides can be written as the same product
of powers of /4 and Eg then the equation holds. Conversely, suppose

I1Ex =] &,
i=1 =1

for some Eisenstein series {Ey, }7_y, {Ey, 172, satisfying k; # ¢; for all 4, j. Without loss
of generality, assume that k,, > k; and k,, > ¢; for all 4, j. Assume also that Ej has at
least one non-trivial zero on the arc A, and let z, be the nontrivial zero of Ej closest
to i. Then, from Lemma 2.4,

T

[ Ek.(20) = 0# [T Ee,(20),
j=1

i=1

a contradiction, implying that k;, £; < 14 for all 4, j. Assume k; = 12 for some i. Since
£; =14 or £; <10 for all j, this 1n1plle:3 the same contradiction as above, and similarly
if /; =12 f01 some j. Thus, every element of {Ej, }[_; U {E¢; }]L; must also be an
element of {Ey, Fs, Es, E19, F14}, and can be written as products of powers of Ey and
Fg. Therefore we have

11Ex = 1] &, = EZE,
i=1 j=1

completing the proof of Theorem 1.1. O

Although computational difficulties have restricted our result to only the first zero of
Ey., data for small k, £ as well as the methods in [Noz08] suggest the following conjecture.



454 T. Griffin et al. / Journal of Number Theory 219 (2021) 445-459

Conjecture 3.1. When k #£ {, every zero of Ey, on A is distinct from every zero of Ey, on
A.

The methods of Lemma 2.4 could prove partial results towards this conjecture. How-
ever, these techniques only work for zeros in the interval (7/2, 117 /18] due to T (#) failing
to have the same exponential decay bound on (117/18,27/3). Even on (w/2,117/18],
note that when ¢ divides k, the zeros of 2cos(£8/2) are all included in the zeros of
2 cos(k#/2). This means that any argument made with the bounding strategy presented
above will not suffice, and a closer look is needed at the exact behavior of Ty (6).

This conjecture is closely related to the zero polynomials associated to each Ej.

Definition 3.2 (Zero polynomial of Ey,, [Gek01]). Let

n

ou(@) = [[(x - ()

i=1

27w

where z; runs over zeros of E}, other than i or 73

, and j(z) is the j-invariant function.
The truth of the following conjecture would then be sufficient to imply Theorem 1.1.

Conjecture 3.3 (Cornelissen [Cor99] and Gekeler [Gek(1]). The zero polynomials @ (x)
are irreducible over Q.

It is not hard to show that distinct Eisenstein series have distinct zero polynomials,
excluding Fy, Es, Es, E1o. and E14, which all share the same trivial zero polynomial.
Since no two distinet irreducible polynomials share common zeros, Conjecture 3.3 implies
Conjecture 3.1, which then implies Theorem 1.1 analogously to the proof above.

Finally, let us discuss an application of Theorem 1.1 on the critical values of L-
functions. Let f € Si be a cuspform of weight k& and level one, and let £ be even with
4 < ¢ < k — 4. The Rankin-Selberg convolution yields the following identity [Gha00),
Section 2]

_ T(k=1) 20 L(k—1.f)L(k—1(f)
(£ EtEx_y) = T@mFL B, C(k—0)

where L(s, f) denotes the usual L-function associated to f.
If we write

E¢E,_ o= Er + Z coff
f

as a linear combination over a basis of normalized Hecke eigenforms, then

(f. EeEx_¢)

TR
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Note that if o € Gal(C/Q) is an automorphism of C, then

Cg,fd = Cif

Now, suppose we are given two even numbers /1 and fo with 4 < #1 < o < k —4 and
£1 + £y # k. By Theorem 1.1, the inequality

E¢ By o, # Ee, Ei g,
holds except for
(1,02, k) = (4,8,18), (4,10, 18), (6, 10, 20).

Let us assume the inequality holds. Then there exists a normalized Hecke eigenform f
of weight k such that ¢y, # ce, r, or equivalently

(£ Ee,Exv,) # (fs Bty Bi—s,).

Therefore,
2 Lk—t,f) 20 Lk—1tf)
By ((k=t) 7 By ((k—fa)
As
N (2mi)*

the inequality can be further simplified as

by - (k—1y)! . Lk —1{4.f) by - (k—15)! _L(k*fg,f)
By, Br—s, (271’7:)’“751 By, Br—s, (271'2');“762 '

If we assume Maeda’s conjecture (Conjecture 1.2 in [HM97]) on the simplicity of the
Hecke algebra on Sg, then the Galois group Gal(C/Q) acts transitively on the basis of
normalized eigenforms. Thus, if ¢z, ¢ # ¢, 5 for some f, then

Coy,f F Clof

for all eigenforms f.
The above discussion can be summarized as the following result.

Theorem 3.4. Suppose dim(Sy) > 1. Let {1 and la be even numbers with 4 < 1 < fo <
k—4 and {1 + {2 # k such that

(01,05, k) # (4,8,18), (4,10,18), (6,10, 20).
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Then there exists a normalized eigenform f of weight k such that

(2mi)k—t:

01 - (k — 1))
By, By,

by (k — £o)!
By, By,

@miyF—t

Furthermore, if the Hecke algebra on Sy, is simple, then the above inequality holds for

every normalized eigenform of weight k.

See Table 6 for computational evidence of the above theorem for normalized eigen-
forms of weights 12,16, --- ,24 and 26.
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Appendix A. Tables

Tables 1, 2, and 3 complete the proof of Lemma 2.4 and were computed using the

closed formula given in [Koh04]. The aj ,, and ag,p values follow the same notation of

2.1. Tables 4 and 5 complete the proof of Corollary 2.3. For Table 6 let

Yt =

(k=0

Lk~ 1)

ByBi.—¢

(2mi)k—¢

so that the values can be used to verify Theorem 3.4 [LMFDB]. Calculations were com-
puted with 1000 significant digits in Pari/GP [Bat+98]. See [Gri20] for source code.

Table 1
First Zero of Fy with £ =0 (mod 4).

k

-
Qg1

Qg1

[ 1 — k]

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72

1.824855600
1.768610843
1.727597772
1.701752889
1.682984081
1.668973688
1.658062219
1.649336271
1.642196131
1.636246180
1.631211569
1.626896196
1.623156205
1.619883716
1.616996237
1.614429460

1.832595715
1.767145868
1.727875959
1.701696021
1.682996064
1.668971097
1.658062789
1.649336143
1.642196160
1.636246174
1.631211570
1.626896196
1.623156204
1.619883712
1.616996219
1.614429558

0.007740115042
0.001464974861
0.0002781873219
5.686819194 x 10~ °

1.198326671 x
2.591185736 x
5.705771539 x
1.274571294 x
2.879756905 x
6.567376166 x
1.508052409 x
3.753475860 x
4.270295682 x
3.720879568 x
1.869869402 x
9.808943303 x

10~°
10—¢
1077
1077
10-8
10—°
10~*
10—10
10—10
10~°
108
10~8
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Table 2
First Zero of F}, with k =2 (mod 4).

k Qg Qg1 g 1 — okl

18 1.915434107  1.919862177  0.004428069756

22 1.857250367  1.856395659  0.0008547076081
26 1.812293607  1.812457300  0.0001636936144
30 1.780269358  1.780235837  3.352128264 x 10—°
34 1.755588820  1.755595805  7.065884793 x 10—°
38 1.736144836  1.736143309  1.526948311 x 10 °
42 1.720395641  1.720395977  3.359360348 x 107
46 1.707387387  1.707387312  7.496661428 x 108
50  1.696460016  1.606460033  1.692060382 x 10 °
54  1.687151614  1.687151610  3.854938813 x 10 °
58  1.679127107  1.679127108  8.851164162 x 1010
62 1.672138026  1.672138025  2.045891951 x 10— 10
66 1.665996104  1.665996104  4.776831270 x 10~
70 1.660556117  1.660556117  1.832176137 x 10!

Table 3
Second Zero of Fy,.

k aj o k2 lak o — ar,i1

24 1.960354810  1.963495408  0.003140598274

28 1.907909656  1.907395540  0.0006041163696
30 1.087251378  1.089675347  0.002423969265

32 1.865205828  1.865320638  0.0001148096729
34 1.040858142  1.940395463  0.0004626798557
36 1.832618084  1.832505715  2.326063148 x 10 °

Table 4

aj, ; Range for k =0 (mod 4).
k (an1 — %) (a1 + =)
12 1.810779099 1.854412330
16 1.754874021 1.779417714
20 1.720021978 1.735729941
24 1.696241867 1.707150175
28 1.678988931 1.687003198
32 1.665903136 1.672039059

Table 5

ajp ; Range for k =2 (mod 4).
k (vp1 — %) (k1 + &%)
14 2.003566743 2.035623811
18 1.910165904 1.929558451
22 1.849904765 1.862886553
26 1.807809974 1.817104627
30 1.776745179 1.783726496

34 1.752878254 1.758313535
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Table 6
Yi,1-Values for Small k.

k E ")/k,e

12 4 55.61565697
6 —98.10601890

16 4 62.82185616
6 —146.9258242
8 181.7264369
10 —146.9258242

18 4 58.03385626
6 —109.4290547
8 58.03385626
10 58.03385626
12 —109.4290547

20 4 60.48221866
6 —130.6645810
8 142.2118725
10 —130.6645810
12 142.2118725
14 —130.6645810

22 4 59.91248008
6 —125.0255289
8 114.1435704
10 —42.34605190
12 —42.34605190
14 114.1435704
16 —125.0255289

24.a 4 59.77727589
6 —124.2114447
8 113.9746791
10 —57.30971502
12 28.89997856
14 —57.30971502
16 113.9746791
18 —124.2114447

24.b 4 60.29164885
6 —128.4638733
8 129.6435717
10 —89.53486445
12 69.51387145
14 —89.53486445
16 129.6435717
18 —128.4638733

26 4 59.99879213
6 —125.9822665
8 119.8374044
10 —64.87258915
12 17.70494990
14 17.70494990
16 —64.87258915
18 119.8374044

20 —125.9822665
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